Mitigating risk from collision fatalities: avoidance

Avoid

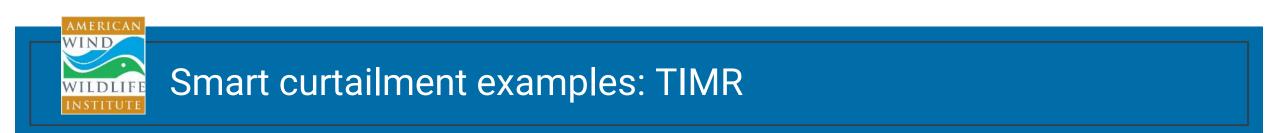
Use risk analysis and other research findings to inform siting

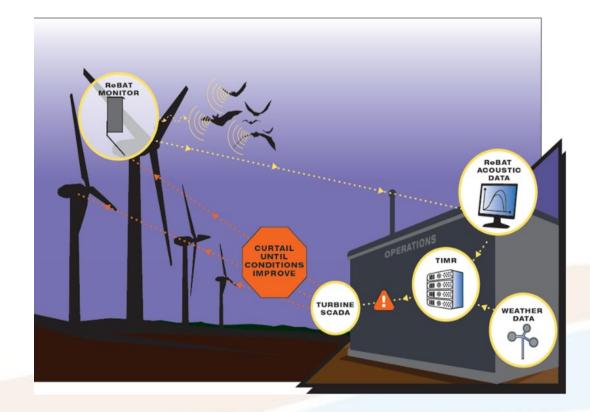
Siting

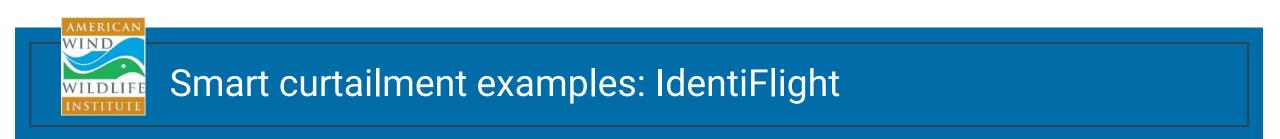
Macro-siting: locating individual projects within a landscape, *Micro-siting*: locating individual turbines and associated infrastructure within a project boundary

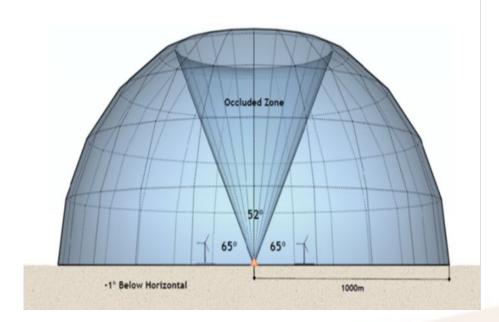
Barriers to implementation

- Lack robust understanding of risk factors associated with siting, especially for bats.
- Turbines may attract bats, greatly hindering risk assessment.


Minimize


Develop and evaluate techniques and technologies to reduce impacts


Turbine shutdown

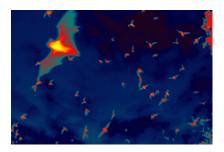

VINE

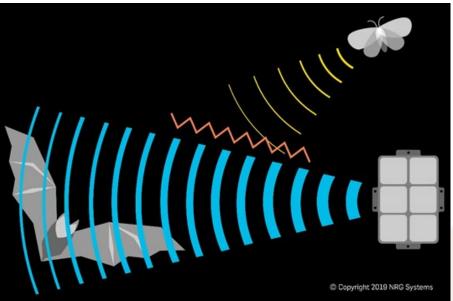
Blanket curtailment: seasonal or during particular conditions (e.g., low wind speed) *"Smart" curtailment*: only when risk is elevated

Minimize

Develop and evaluate techniques and technologies to reduce impacts

Turbine shutdown


Blanket curtailment: seasonal or during particular conditions (e.g., low wind speed) *"Smart" curtailment*: only when risk is elevated


Deterrence

VINE

Ultrasonic

Audible

Mitigating risk from collision fatalities: minimization

Minimize

Develop and evaluate techniques and technologies to reduce impacts

Turbine shutdown

Blanket curtailment: seasonal or during particular conditions (e.g., low wind speed) *"Smart" curtailment*: only when risk is elevated

Deterrence

VINE

WILDLIFE

Increase detectability of blades

Blade painting Surface roughening AMERICAN

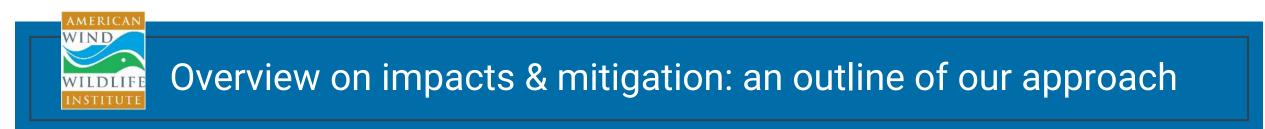

WILDLIF

VINE

Mitigating risk from collision fatalities: compensation

Compensate

Develop quantifiable and verifiable options for offsetting impacts



Power-pole retrofitsLead abatement?Roadkill removal?Habitat improvement?

Bats

Habitat banks In-lieu fees

Fatalities from collisions

Habitat-based impacts

We'll summarize what is known about:

Risk
Mitigation
Information gaps

AMERICAN

Collision fatalities: key information needs

Objective	Outcome
Improve understanding of risk factors for bats and migratory birds	Improved siting and avoidance of high-risk areas
Evaluate and refine minimization technologies and strategies	Reduced bat and eagle fatalities
Develop estimates of population size for migratory tree bats	Establish empirical basis for setting fatality reduction targets

Fatalities from collisions

Habitat-based impacts

We'll summarize what is known about:

Risk
Mitigation
Information gaps

Potential pathways for habitat-based impacts of wind energy

Habitat fragmentationBarriers to movement

Direct habitat loss

 Least significant, mostly a function of road area.

Reduced habitat quality

- Depressed vital rates
- Change in the properties of the biological community or physical environment

Functional habitat loss

- Stems from avoidance
- More extensive than direct loss

Taxa of concern for habitat-based impacts

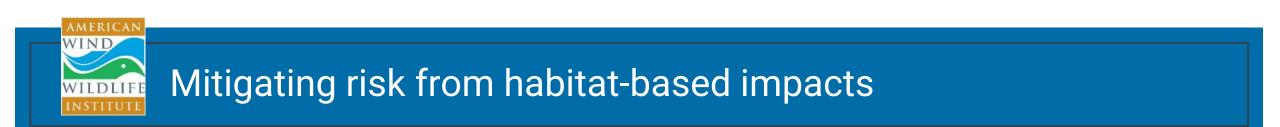
Direct habitat loss Functional habitat loss Habitat fragmentation Reduced habitat quality

Functional habitat loss

Reduced habitat quality

Functional habitat loss Reduced habitat quality

Functional habitat loss Habitat fragmentation Reduced habitat quality



Fatalities from collisions

Habitat-based impacts

We'll summarize what is known about:

Risk
2. Mitigation 3. Information gaps

Avoid

Use risk analysis and other research findings to inform siting

Minimize

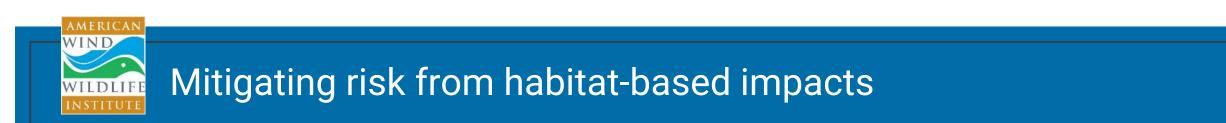
Develop and evaluate techniques and technologies to reduce impacts

Compensate

Develop quantifiable and verifiable options for offsetting impacts

Avoid

Use risk analysis and other research findings to inform siting


Minimize

Develop and evaluate techniques and technologies to reduce impacts

Buffers or setbacks around critical habitat features (e.g., leks) Best Management Practices (e.g., bury overhead lines, limit timing of disturbance)

Compensate

Develop quantifiable and verifiable options for offsetting impacts

Avoid

Use risk analysis and other research findings to inform siting

Minimize

Develop and evaluate techniques and technologies to reduce impacts

Compensate

Develop quantifiable and verifiable options for offsetting impacts

In-lieu fees Habitat banks Habitat management

Fatalities from collisions

Habitat-based impacts

We'll summarize what is known about:

Risk
Mitigation
Information gaps

AMERICAN

Habitat-based impacts: key information needs

Objective	Outcome
Identify taxa at greatest risk from habitat-based impacts	Future research on risk and mitigation targeted at species with greatest need
Understand causes of variation in habitat-based response to wind energy	Improved basis for implementing effective conservation measures
Develop verifiable, quantifiable approaches to offset impacts to habitat	Expanded mitigation options that reduce impacts and facilitate development in low-risk areas
Integrate conservation of wildlife habitat into electric- system build-out models	Enhanced ability to identify low-risk sites under realistic future scenarios of energy generation and transmission.

- General overview of wind/wildlife science:
 - Allison et al. 2019. Impacts to wildlife of wind energy siting and operation in the United States.
 - https://www.esa.org/wp-content/uploads/2019/09/Issues-in-Ecology_Fall-2019.pdf
- Curtailment:
 - Hayes et al. 2019. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities.
 - https://doi.org/10.1002/eap.1881
 - McClure et al. 2021. Eagle fatalities are reduced by automated curtailment of wind turbines.
 - https://doi.org/10.1111/1365-2664.13831

For annual updates on the peer-reviewed literature addressing wind and wildlife, see https://awwi.org/resources/summary-of-wind-power-interactions-with-wildlife/